Limitations on Right-Lateral, Strike-Slip Displacement, Death Valley and Furnace Creek Fault Zones, California

Author(s):  
LAUREN A. WRIGHT ◽  
BENNIE W. TROXEL
1974 ◽  
Vol 64 (4) ◽  
pp. 1005-1016
Author(s):  
C. J. Langer ◽  
M. G. Hopper ◽  
S. T. Algermissen ◽  
J. W. Dewey

abstract Epicenters determined from 164 of the Managua aftershocks define two seismic zones. The primary zone, which is 15 to 20 km in length and strikes northeast along the Tiscapa-Ciudad Jardin fault system, contains 80 per cent of the aftershock locations. A subsidiary zone, northwest of Managua, suggests strain release possibly related to the north-south striking San Judas fault. Depth of foci are principally in the upper 7 km for both zones. Composite fault-plane solutions indicate a predominate left-lateral strike-slip displacement; the preferred planes for each zone agree with the strike of surface fractures or previously mapped faults.


2020 ◽  
pp. 1-50 ◽  
Author(s):  
Molly Turko ◽  
Bryan Tapp

We propose that the Washita Valley Fault in the southeast Anadarko Basin originated when Precambrian-Cambrian pre-existing rift-related faults became reactivated as a rotational stress field reached a favorable orientation for strike-slip displacement. During the Early to Middle Pennsylvanian, contractional deformation dominated as a Precambrian-Cambrian failed rift underwent structural inversion along a northeast directed stress field. Structures that developed in the basin consisted primarily of thin-skinned fold-thrust structures resulting from slip along two main detachment levels. By the Late Pennsylvanian, stress rotated towards the east-northeast causing left-lateral strike-slip displacement along east-west oriented structures. During this time the Washita Valley Fault originated from an east-west oriented pre-existing basement fault. The Washita Valley Fault formed as a near-vertical segment cutting through the earlier fold-thrust structures. Movement was accompanied by oblique normal slip allowing grabens to develop that were subsequently filled with Virgilian age sediment. A left-step of the Washita Valley Fault allowed for a significant graben to develop near the east end of the study area resulting in a thick Virgilian age growth section validating the timing of fault movement. The Wichita Mountain Fault also underwent a component left-lateral strike-slip displacement during the Late Pennsylvanian highlighting its continuous movement and deformation history in a rotating stress field. While much of the published literature on the Washita Valley Fault is limited to the Arbuckle Uplift, our study documents its subsurface architecture, timing, and structural history in the southeast Anadarko Basin using a modern 3D seismic dataset in relation to evolving Pennsylvanian tectonics.


1989 ◽  
Vol 26 (9) ◽  
pp. 1764-1777 ◽  
Author(s):  
Michel Malo ◽  
Jacques Béland

At the southern margin of the Cambro-Ordovician Humber Zone in the Quebec Appalachians, on Gaspé Peninsula, three structural units of Middle Ordovician to Middle Devonian cover rocks of the Gaspé Belt are in large part bounded by long, straight longitudinal faults. In one of these units, the Aroostook–Percé anticlinorium, several structural features, which can be ascribed to Acadian deformation, are controlled by three subparallel, dextral, strike-slip longitudinal faults: Grande Rivière, Grand Pabos, and Rivière Garin. These faults follow bands of intense deformation, contrasting with the mildly to moderately deformed intervals that separate them.Most of the structural features observed – rotated oblique folds and cleavage, subsidiary Riedel and tension faults, and offsets of markers – can be integrated in a model of strike-slip tectonics that operated in ductile–brittle conditions. A late increment of deformation in the form of conjugate cleavages and minor faults is restricted to the bands of high strain. An anticlockwise transection of the synfolding cleavage in relation to the oblique hinges may be a feature of the rotational deformation.The combined dextral strike slip that can be measured within the three major longitudinal fault zones amounts to 138 km, to which can be added 17 km of ductile movement in the intervals, for a total of 155 km.


Author(s):  
Xiaohui He ◽  
Hao Liang ◽  
Peizhen Zhang ◽  
Yue Wang

Abstract The South China block has been one of the most seismically quiescent regions in China, and the geometries and activities of the Quaternary faults have remained less studied due to the limited outcrops. Thus, source parameters of small-to-moderate earthquakes are important to help reveal the location, geometry distribution, and mechanical properties of the subsurface faults and thus improve the seismic risk assessment. On 12 October 2019, two earthquakes (the Ms 4.2 foreshock and the Ms 5.2 mainshock) occurred within 2 s and are located in southern South China block, near the junction region of the large-scale northeast-trending fault zones and the less continuous northwest-trending fault zones. We determined the point-source parameters of the two events via P-wave polarity analysis and regional waveform modeling, and the resolved focal mechanisms are significantly different with the minimum 3D rotation angle of 52°. We then resolved the rupture directivity of the two events by analyzing the azimuth variation of the source time duration and found the Ms 4.2 foreshock ruptured toward north-northwest for ∼1.0 km, and the Ms 5.2 mainshock ruptured toward east-southeast (ESE) for ∼1.5 km, implying conjugate strike-slip faulting. The conjugate causative faults have not been mapped on the regional geological map, and we infer that the two faults may be associated with the northwest-trending Bama-Bobai fault zone (the Shiwo section). These active faults are optimally oriented in the present-day stress field (northwest-southeast) and thus may now be potentially accumulating elastic strain to be released in a future large earthquake.


2005 ◽  
Vol 21 (1_suppl) ◽  
pp. 165-179 ◽  
Author(s):  
Mehdi Zaré ◽  
Hossein Hamzehloo

The Bam earthquake of 26 December 2003 ( Mw 6.5) occurred at 01:56:56 (GMT, 05:26:56 local time) near the city of Bam in the southeast of Iran. Two strong phases of energy are seen on the accelerograms. The first comprises a starting subevent with right-lateral strike-slip mechanism located south of Bam. The mechanism of the second subevent was a reverse mechanism.


GSA Today ◽  
2021 ◽  
Author(s):  
William McClelland ◽  
Justin Strauss ◽  
Maurice Copron ◽  
Jane Gilotti ◽  
Karol Faehnrich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document